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1 Introduction

We now have a good understanding of the spectrum of quarter BPS dyons in a variety

of N = 4 supersymmetric string theories [1–28]. One of the mysteries in these results

is the appearance of modular forms of Sp(2, Z) (or its subgroups) in the expression for

the dyon partition function. Since Sp(2, Z) is the modular group of genus two Riemann

surfaces, one might expect that genus two surfaces would play a role in determining the

dyon spectrum. The counting that leads to the result however does not explicitly make

use of genus two Riemann surfaces [3, 9]. A possible explanation for the role of genus two

surfaces has been suggested in [4, 12] by representing the quarter BPS dyon as a string

network configuration [29–31] in type IIB string theory on K3 × T 2 and then relating the

associated partition function via duality to a configuration of euclidean M5-branes wrapped

on K3 times a genus two Riemann surface.

Another mystery in this subject is the prescription for computing the spectrum in

different domains in the moduli space separated by walls of marginal stability. Naively

one would expect that since the dyon spectrum jumps discontinuously across a wall of

marginal stability [32–37], the partition function computed in different domains will be

different. Instead one finds that as an analytic function of the chemical potentials the

partition functions in different domains are identical [9, 11, 13]. However, in order to

extract the degeneracies from the partition function in different domains in the moduli

space, one needs to choose different contours in the space of complex chemical potentials

along which we carry out the Fourier integral of the partition function. A specific set of

rules relating the domains in the moduli space and the integration contour in the space of

chemical potentials have been given in [13, 17]. The original prescription of [13] restricts the

location of the integration contour to be inside a certain region depending on the domain

in the moduli space where we want to compute the degeneracy. The value of the integral

is independent of the choice of contour as long as the contour lies within this region. This

prescription arises from explicit counting of states of quarter BPS dyons [9, 11] and the
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requirement of S-duality invariance [13, 14]. Ref. [17] proposed a definite choice of contour

corresponding to a specific point in the moduli space. While this is consistent with the

prescription of [13], currently we do not have any understanding of the physical origin of

this prescription. Our main goal in this paper will be to derive this prescription using the

relation between the dyon spectrum and genus two surfaces, and in that process make the

approach advocated in [4, 12] a little more precise. For simplicity we work with the specific

example of heterotic string theory on T 6, but the results should be easily generalizable to

other N = 4 supersymmetric string theories.

The rest of the paper is organised as follows. In § 2 we review some of the necessary

background material and summarize our main results. In § 3 we describe a specific set of

quarter BPS dyon configurations in heterotic string theory on T 6, introduce (real) chemical

potentials dual to appropriate charges and relate these chemical potentials to background

values of appropriate components of 2-form fields in the theory. We then show how the

dyon partition function associated with these states automatically complexifies the chemical

potentials and leads to the correct choice of the integration contour in the space of complex

chemical potentials. In § 4 we use the strategy of [4, 12] to relate the original partition

function to that of an M5-brane on K3 times a genus two surface and show that the

moduli of the associated genus two surface are given precisely by the complexified chemical

potentials which arise in the analysis of § 3. However our analysis does not lead to a

foolproof derivation of the actual partition function. Some of the problems were already

discussed in [12]; we discuss some additional subtleties in § 5.

Finally we would like to note that the analysis of this paper can in principle be extended

to 1/8 BPS states in type IIB string theory on T 4 × T 2 by representing these states as a

network of (p, q) 5-branes along T 4 times cycles of T 2. This suggests that this partition

function can also be represented as an appropriate quantity associated with a genus two

Riemann surface.

2 Background and summary of results

In this section we shall review some material which will be needed for our analysis, and then

summarize our results. We shall restrict our analysis to the simplest N = 4 supersymmetric

string theory, namely heterotic string theory compactified on T 6 or equivalently type IIA

or IIB string theory compactified on K3 × T 2. This theory has 28 U(1) gauge fields and

as a result a dyon is characterized by a pair of 28 dimensional vectors (Q,P ) labelling

electric and magnetic charges. The T-duality group of the theory is a discrete subgroup of

O(6, 22) with Q and P transforming in the vector representation of O(6, 22). We denote

by L the signature (6, 22) matrix that remains invariant under the O(6, 22) transformation

and define

Q2 = QT LQ, P 2 = P T LP, Q · P = QT LP . (2.1)

These are the only independent invariants of the continuous O(6, 22) group which can

be constructed out of Q and P . However since only a discrete subgroup of O(6, 22) is

a symmetry of string theory, there are other invariants of this discrete group on which
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physical quantities can depend. gcd(Q ∧ P ) is one such invariant [14] We shall restrict to

a subset of dyons for which

gcd(Q ∧ P ) = 1 . (2.2)

One can show that within this subclass (Q2, P 2, Q · P ) are the complete set of T-duality

invariants, ı.e. two dyon charges satisfying (2.2) and having same values of Q2, P 2 and

Q · P can be related by a T-duality transformation [22].

We shall denote by d(Q,P ) the sixth helicity trace index B6 of dyons of charge

(Q,P ) [38]. This effectively counts the number of quarter BPS supermultiplets carrying

charge (Q,P ), with sign +1 (−1) if the average helicity of all the states in the supermulti-

plet is an integer (integer plus half). This is a protected index and hence is not expected to

change under a continuous variation of the moduli of the theory. However there are walls

of marginal stability on which a quarter BPS dyon can break up into a pair of half-BPS

dyons, and as we cross such a wall in the moduli space the index d(Q,P ) can jump. A

simple way to label the walls of marginal stability is as follows. One can show that for

dyons carrying charge vector of the form given in (2.2) the decay of a quarter BPS dyon

into half BPS dyons can take place on a codimension one subspace only if the decay is of

the form [18]:

(Q,P ) → (αQ + βP, γQ + δP ) + (δQ − βP,−γQ + αP ), α + δ = 1, αδ = βγ , (2.3)

where (α, β, γ, δ) are integers. Given (α, β, γ, δ), the corresponding wall in the moduli space

may be determined by solving the equation

m(Q,P ) = m(αQ + βP, γQ + δP ) + m(δQ − βP,−γQ + αP ) , (2.4)

where m(Q,P ) denotes the BPS mass of the state of charge (Q,P ). Thus for given (Q,P ),

specifying (α, β, γ, δ) determines the wall uniquely, and we can label a wall by the set of

integers (α, β, γ, δ).

For a given charge (Q,P ), these walls of marginal stability divide the moduli space of

vacua into different domains. A domain bounded by a set of walls can then be specified by

giving the values of (α, β, γ, δ) for each of the walls bordering the domain. We shall denote

the collection of (α, β, γ, δ) labelling a domain by ~c. Thus d(Q,P ) depends not only on the

T-duality invariants Q2, P 2 and Q · P , but also on the domain label ~c. Let us denote this

function by f(Q2/2, P 2/2, Q · P ;~c), and define the partition function:

Z(ρ, σ, v;~c) ≡
∑

Q2,P 2,Q·P

(−1)Q·P+1 exp

{
2πi

(
σ

Q2

2
+ ρ

P 2

2
+ v Q · P

)}
× (2.5)

×f(Q2/2, P 2/2, Q · P ;~c) .

Since the dyon degeneracy function f grows rapidly for large charges, the sum given above

is not convergent for real ρ, σ, v, — we need to define it in the complex (ρ, σ, v) space. Let

us take

ρ = ρ1 + iρ2, σ = σ1 + iσ2, v = v1 + iv2 . (2.6)
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In turns out that the sum converges only inside a certain region in the (ρ2, σ2, v2) space.

We shall refer to these regions as ‘chambers’, — whereas the word ‘domain’ will be reserved

for the regions in the moduli space of vacua bounded by walls of marginal stability. This

chamber depends on the domain label ~c as follows. Suppose (α, β, γ, δ) are the parameters

associated with a particular wall. We associate with this a plane in the (ρ2, σ2, v2) space

given by

ρ2γ − σ2β + v2(α − δ) = 0 . (2.7)

Now consider the collection of such planes for all (α, β, γ, δ) associated with the walls of

a particular domain. These form the boundary of a cone in the (ρ2, σ2, v2) space with its

vertex at the origin. The chamber in the (ρ2, σ2, v2) space where the sum (2.5) is convergent

consists of points inside this chamber lying sufficiently far away from the origin. In other

words if we pick any point (a1, a2, a3) in the interior of this cone and choose

(ρ2, σ2, v2) = Λ(a1, a2, a3), (2.8)

then for sufficiently large Λ the sum converges. Once the partition function is defined this

way inside a chamber, one can extend it to other regions in the complex (ρ, σ, v) space via

analytic continuation. It turns out that the function defined this way is independent of the

choice of ~c and is given by the inverse of the Igusa cusp form Φ10(ρ, σ, v):

Z(ρ, σ, v;~c) =
1

Φ10(ρ, σ, v)
. (2.9)

This allows us to invert (2.5) to write

d(Q,P ) = (−1)Q·P+1

∫

C(~c)
dρdσdv e−iπ(σQ2+ρP 2+2vQ·P ) 1

Φ10(ρ, σ, v)
, (2.10)

where the choice of the contour C(~c) is given by

0 ≤ ρ1 ≤ 1, 0 ≤ σ1 ≤ 1, 0 ≤ v1 ≤ 1, ρ2 = M1, σ2 = M2, v2 = M3 , (2.11)

M1, M2, M3 being constants lying inside the chamber where the original sum is convergent.

The result (2.10) was derived by working in a given domain of the moduli space where the

type IIB string coupling is weak [9, 11], and then extending the result to other domains by

S-duality transformation [13, 14].

A simple prescription for the choice of (ρ2, σ2, v2) that satisfies the requirement of

lying inside a given chamber when the moduli lie inside a given domain was given in [17].

Heterotic string theory on T 6 contains a complex scalar modulus τ labelling the axion-

dilaton field and another set of 132 real moduli labelling the coset O(6, 22)/(O(6)×O(22)).

The latter are parametrized by a symmetric 28 × 28 matrix M satisfying MT LM = L.

We define

Q2
R = QT (M + L)Q, P 2

R = P T (M + L)P, QR · PR = QT (M + L)P . (2.12)
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Then if we choose1

ρ2 = Λ





|τ |2

τ2
+

Q2
R√

Q2
RP 2

R − (QR · PR)2



 ,

σ2 = Λ





1

τ2
+

P 2
R√

Q2
RP 2

R − (QR · PR)2



 ,

v2 = −Λ





τ1

τ2
+

QR · PR√
Q2

RP 2
R − (QR · PR)2



 , (2.13)

then for sufficiently large Λ, (ρ2, σ2, v2) automatically lie inside the correct chamber asso-

ciated with the domain in which the point (τ,M) lie. This formula picks a given ray inside

the cone bounded by the surfaces (2.7). As far as the prescription for the contour is con-

cerned, such precise specification is not necessary; any other ray inside the cone would have

been an equally good choice. Nevertheless this formula has some remarkable properties.

It correctly takes us from one chamber to another as the moduli cross a wall of marginal

stability. Furthermore this formula is S-duality covariant; if we pick another point in the

moduli space related to the original one by an S-duality transformation, the ρ2, σ2, v2

given in (2.13) transform correctly so as to preserve the exponent in (2.10). This makes

one feel that there must be some deeper origin of this formula that would also naturally

explain the correlation between the chambers in the (ρ2, σ2, v2) space and domains in the

moduli space without having to make use of S-duality transformation.

However already at this stage we can anticipate a possible difficulty in deriving (2.13).

In defining the dyon partition function via (2.5) we need to sum over different charges at

fixed values of (ρ, σ, v). On the other hand (2.13) determines the imaginary parts of (ρ, σ, v)

as a function of the charges and moduli. Thus if we keep the moduli fixed, it would seem

that we need to keep changing the imaginary parts of (ρ, σ, v) as we sum over different

charges.2 How can we satisfy these two contradictory requirements? We shall solve this

problem by working in a specific corner of the moduli space and with a specific family of

dyon charges such that as we vary the charges to generate different (Q2, P 2, Q · P ), the

values of (ρ2, σ2, v2) computed from (2.13) remain unchanged. In this case we do not have

any difficulty in defining the dyon partition function at fixed values of the moduli.

Like the contour prescription (2.13), the appearance of the Igusa cusp form Φ10 in the

expression for the dyon partition function is also quite mysterious. The same cusp form

also appears in the expression for the two loop partition function of the bosonic string

theory. This would lead one to suspect that there is an underlying genus two surface

behind the formula given in (2.10). There is however no sign of such a genus two surface in

the counting that leads to (2.10); the final result just happens to have this specific form. In

a pioneering work, Gaiotto [4] and later Dabholkar and Gaiotto [12] suggested a possible

1Throughout this paper we shall use the convention of [24].
2In contrast if we keep the label ~c = {(αi, βi, γi, δi)} fixed, then there is no problem of this kind since the

restriction on (ρ2, σ2, v2) to lie inside the cone bounded by the surfaces (2.7) is independent of the charges.
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origin of this genus two surface from a different viewpoint. The main idea of [4, 12] was to

represent the quarter BPS configuration in heterotic string theory on T 6 as a network of

strings in a dual type IIB string theory on K3×T 2. The strings are obtained by wrapping

(p, q) five-branes on K3, and the network of such strings lie along the plane of the T 2. The

partition function of such strings (with (−1)F inserted in the trace and the integration

over the fermionic and the bosonic zero modes associated with the center of mass degrees

of freedom factored out) can be represented as a path integral over an euclidean type IIB

string theory with periodic boundary condition along the thermal circle. By making a

T-duality transformation along the thermal circle and then identifying the resulting type

IIA string theory as M-theory on another circle, the partition function can be regarded as

that of an euclidean M5-brane wrapped on K3 times a genus two surface embedded in T 4.

This genus two surface was identified as the origin of the Φ10 in the partition function of

quarter BPS states.

Our main purpose in this paper is to make this procedure a little more precise and in

that process recover the correct prescription for the integration contour as given in (2.13).

For this we begin with a configuration in IIB on K3×T 2 with D5 and NS5-branes wrapped

on K3 times two different cycles of T 2 and also D strings and fundamental strings wrapped

on various cycles of T 2. For fixed D5 and NS5-brane charges Q2, P 2 and Q · P are

given by appropriate linear combinations of the D-string and fundamental string charges,

and hence the chemical potentials dual to Q2/2, P 2/2 and Q · P can be interpreted as

background values of the 2-form fields with one leg along the time direction and another

leg along the cycles of T 2. We denote these background fields by σ1, ρ1 and v1 respec-

tively. We then euclideanize the time circle and compactify it on a circle of period 2πβ

as in [4, 12], with perodic boundary condition on the fermions. The euclidean path inte-

gral in the presence of such a background may be represented as a trace of (−1)F e−2πβH

with an extra insertion of the exp
[
2πi

(
ρ1

P 2

2 + σ1
Q2

2 + v1Q · P
)]

representing the effect

of the background 2-form fields. Furthermore we do not need any extra damping fac-

tor for regulating the trace; the damping is provided by the exp(−2πβ m(Q,P )) term

that appears naturally in the trace, m(Q,P ) being the mass of the BPS state of charge

(Q,P ). By expanding exp(−2πβ m(Q,P )) in appropriate limit where the 5-branes give

the dominant contribution to m(Q,P ) we find that it effectively provides us with a damp-

ing factor of exp
{
−2π

(
ρ2

P 2

2 + σ2
Q2

2 + v2Q · P
)}

with (ρ2, σ2, v2) given in (2.13). Thus

this procedure automatically leads to the choice of (ρ2, σ2, v2) that makes the partition

function convergent.

We then go ahead and follow the prescription of [4, 12] to map the euclidean IIB theory

to euclidean M-theory on K3×T 4 and the string network configuration to a configuration of

euclidean M5-brane wrapped on K3 times a genus two surface embedded in T 4. Standard

duality transformation laws determine the geometry of the final T 4. This in turn allows us

to find the moduli of the genus two surface by requiring that the surface is holomorphically

embedded in T 4. The result is that the period matrix of the genus two surface is given by

Ω =

(
σ1 + iσ2 v1 + iv2

v1 + iv2 ρ1 + iρ2

)
, (2.14)
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with (ρ1, σ1, v1) determined by the background 2-form fields in the original theory, and

(ρ2, σ2, v2) given by (2.13). This allows us the relate the variables (ρ, σ, v) appearing in the

definition of the partition function to the moduli of genus two surfaces.

While our analysis tells us that the partition function of quarter BPS states is given by

an appropriate partition function on the genus two surface with moduli (ρ, σ, v), we have

not explicily computed the partition function and shown that it is given by the inverse of

the Igusa cusp form. Refs. [4, 12] already made some progress in this direction, but some

subtle points involving fermion zero modes are yet to be sorted out. We point out in § 5

some additional issues in the analysis of the partition function. We hope to return to these

points in future.

3 Dyon partition function from 5-brane 1-brane system

We begin with type IIB string theory compactified on K3×S1×S̃1. By making a T-duality

transformation on the circle S̃1 to map this to type IIA string theory on K3×S1 × Ŝ1 and

then using the duality between type IIA string theory on K3 and heterotic string theory on

T 4, we can map this theory to heterotic string theory on T 4×S1× Ŝ1.3 Under this duality

states in the IIB theory carrying winding charge along S1 get mapped to magnetically

charged states in the heterotic string theory and the states carrying winding charge along

S̃1 get mapped to electrically charged states in the heterotic string theory. Furthermore

the complex structure modulus −τ1 + iτ2 of the S1 × S̃1 torus, with the S̃1 regarded as the

a-cycle, gets mapped to the axion-dilaton modulus τ ≡ τ1 + iτ2 of the dual heterotic string.

The other moduli of the IIB theory get mapped to the O(6, 22)/(O(6) ×O(22)) moduli M

of the heterotic string theory, but we shall not need to know the explicit form of this map.

Consider a state in the IIB description containing a (p1, q1) 5-brane wrapped on K3×S̃1

and a (p2, q2) 5-brane wrapped on K3×S1. If we regard the K3-wrapped 5-branes as strings

then such a configuration forms a network of strings on S1 × S̃1 [4], and the BPS mass of

this object, measured in type IIB metric, is given by [31]:4

m2
IIB = A (VK3)

2 λ3
2

(
p1 q1 p2 q2

)
(M0 ± L0)




p1

q1

p2

q2


 (3.1)

where A denotes the area of S1 × S̃1 and VK3 is the volume of K3 measured in the type

3This is a slightly different set of duality transformations compared to those used e.g. in [9].
4In our convention a (p, q) five brane carries p units of D5-brane charge and q units of NS 5-brane

charge. Ref. [31] gives the mass formula for the D-string - fundamental string system in the ten dimensional

canonical metric; we have rescaled it by an appropriate factor to convert it to type IIB metric and also to

take into account extra factors of string coupling and the volume of K3 which appear in the expression for

the (p, q) five brane mass compared to the (p, q) string mass.
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(1,0) (0,1) (0,1) (1,0)(1,1)S1S1
Figure 1. The string network configuration.

IIB metric, and

L0 ≡

(
0 L

−L 0

)
, L ≡

(
0 1

−1 0

)
, (3.2)

M0 ≡
1

τ2

(
M −τ1M

−τ1M |τ |2M

)
, M ≡

1

λ2

(
1 −λ1

−λ1 |λ|2

)
. (3.3)

Here λ = λ1+iλ2 denotes the axion-dilaton modulus of the ten dimensional type IIB string

theory. The sign in front of L0 in (3.1) is to be chosen so that the contribution of this

term to mass2 is positive. On the other hand for most general set of charges (Q,P ) in the

heterotic description, the BPS mass formula measured in the four dimensional canonical

metric takes the form

mcan(Q,P )2 =

{
1

τ2
|QR − τPR|

2 + 2
√

Q2
RP 2

R − (QR · PR)2
}

, (3.4)

where Q2
R, P 2

R and QR ·PR have been defined in (2.12). Since the canonical four dimensional

metric gµν and the type IIB metric gIIB
µν are related by

gµν = VK3 Aλ2
2 gIIB

µν , (3.5)

the BPS mass2 measured in the type IIB metric takes the form

m(Q,P )2 = VK3 Aλ2
2

{
1

τ2
|QR − τPR|

2 + 2
√

Q2
RP 2

R − (QR · PR)2
}

. (3.6)

We now consider a configuration consisting of a (1, 0) 5-brane, ı.e. a D5-brane, wrapped

on K3 × S̃1 and a (0,1) 5-brane, ı.e. an NS5-brane, wrapped on K3 × S1. Thus we have

(p1, q1) = (1, 0) and (p2, q2) = (0, 1). Since the (1,0) brane wraps S̃1 it represents an

electric charge vector Q0 in the dual heterotic string theory. On the other hand the (0, 1)

brane being wrapped on S1 represents a magnetic charge P0. The combined configuration

may be represented as a string network on S1 × S̃1 as shown in figure 1. Our first task

will be to express the combinations Q2
0R, P 2

0R and Q0R ·P0R in terms of type IIB variables.

This is done by comparing the BPS mass formulæ (3.1), (3.6) applied to the charge vectors

– 8 –
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(Q0, 0), (0, P0) and (Q0, P0). We get5

m(Q0, 0)
2 = VK3 Aλ2

2

Q2
0R

τ2
= A (VK3)

2 λ3
2

1

λ2τ2
,

m(0, P0)
2 = VK3 Aλ2

2

P 2
0R|τ |

2

τ2
= A (VK3)

2 λ3
2

|τ |2|λ|2

λ2τ2
,

m(Q0, P0)
2 = VK3 Aλ2

2

{
1

τ2
|Q0R − τP0R|

2 + 2
√

Q2
0RP 2

0R − (Q0R · P0R)2
}

= A (VK3)
2 λ3

2

[
1

λ2τ2
+

|τ |2|λ|2

λ2τ2
+ 2

τ1λ1

λ2τ2
+ 2

]
. (3.7)

This gives

Q2
0R = VK3, (3.8)

P 2
0R = VK3 |λ|

2,

Q0R · P0R = −VK3 λ1 .

We now add to the previous system n1 units of fundamental string charge wrapped

on S̃1, n2 units of fundamental string charge wrapped on S1, m1 units of D-string charge

wrapped on S̃1 and m2 units of D-string charge wrapped on S1. These can be regarded

as excitations of the original D5-brane - NS5-brane system involving small instantons and

world-volume electric fields. Unbroken supersymmetry imposes the constraints m1 ≥ −1,

n2 ≥ −1 after taking into account the induced D-string and the fundamental string charges

on the K3 wrapped D5 and NS5-branes. Then by following the standard duality chain to

map these charges into the heterotic description, we get

Q2 ≡ QT LQ = 2m1,

P 2 ≡ P T LP = 2n2,

Q · P ≡ QT LP = m2 + n1 . (3.9)

The expression for the mass m(Q,P ) gets modified in the presence of these charges. We

shall assume that VK3 is large so that the 5-branes still give the dominant contribution

to m(Q,P ) and compute the first order correction to m(Q,P ) due to the D1 brane and

fundamental string charges. It is easy to see that in eq. (3.6) this contribution comes from

the correction to Q2
R, P 2

R and QR · PR given in (2.12) from the Q2 = 2m1, P 2 = 2n2 and

Q · P = m2 + n1 terms respectively, — corrections to QT MQ, P T MP and QT MP terms

5A D5-brane wrapped on K3 carries 1 unit of D1-brane charge and an NS 5-brane wrapped on K3

carries 1 unit of fundamental string charge. In (3.7), (3.8) we have assumed that these 1-brane charges have

been neutralized by appropriate configuration of D-string and fundamental string.
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are suppressed by further powers of VK3.
6 This gives

δm(Q,P ) =
1

m(Q,P )
VK3 Aλ2

2

[
Q2

2

{
1

τ2
+

P 2
R√

Q2
RP 2

R − (QR · PR)2

}

+
P 2

2

{
|τ |2

τ2
+

Q2
R√

Q2
RP 2

R−(QR · PR)2

}
−Q · P

{
τ1

τ2
+

QR · PR√
Q2

RP 2
R − (QR · PR)2

}]

= A1/2 λ
1/2
2

[
1

λ2τ2
+

|τ |2|λ|2

λ2τ2
+ 2

τ1λ1

λ2τ2
+ 2

]−1/2

[
Q2

2

{
1

τ2
+

P 2
R√

Q2
RP 2

R − (QR · PR)2

}
+

P 2

2

{
|τ |2

τ2
+

Q2
R√

Q2
RP 2

R − (QR · PR)2

}

−Q · P

{
τ1

τ2
+

QR · PR√
Q2

RP 2
R − (QR · PR)2

}]
(3.10)

where in the last step we have used the leading order expression for m(Q,P ) given in the

last line of (3.7). Note that on the right hand side of this equation we have used the

arguments Q, P instead of Q0, P0. Since the difference between (Q2
R, P 2

R, QR · PR) and

(Q2
0R, P 2

0R, Q0R · P0R) is already of the first order, the error due to the replacement of

(Q0, P0) by (Q,P ) on the right hand side is of higher order. We shall work in the limit

VK3 → ∞ at fixed λ, τ and A; in this limit (3.10) is the exact expression for δm(Q,P ).

We denote by y and ỹ the coordinates along S1 and S̃1 respectively, and by t the time

coordinate. Let C(2) and B(2) denote the RR and NSNS 2-form fields. We now make a

Wick rotation t → −iτ , compactify the τ coordinate on a circle of period 2π β with periodic

boundary condition along the circle, and switch on background values of C
(2)
τy , C

(2)
τ ey , B

(2)
τy

and B
(2)
τ ey of the form

C(2)
τy = B

(2)
τ ey = v1, C

(2)
τ ey = σ1, B(2)

τy = ρ1 , (3.11)

all normalized so that ρ1, σ1 and v1 have period 1. Since the background fields C
(2)
τ ey , C

(2)
τy ,

B
(2)
τ ey and B

(2)
τy couple to the charges m1, m2, n1 and n2 respectively, the presence of the

background (3.11) corresponds to inserting a factor of7

exp
[
2πi

(
C

(2)
τ ey m1+C(2)

τy m2+B
(2)
τ ey n1+B(2)

τy n2

)]
= exp

[
2πi

(
ρ1

P 2

2
+σ1

Q2

2
+ v1Q · P

)]
,

(3.12)

into the functional integral. In the Hamiltonian formulation this functional integral may

be represented as a trace with an additional insertion of e−2πβH(−1)F .8 Identifying H as

6This requires taking VK3 → ∞ limit in such a way that the off-diagonal components of M which couple

the wrapped 5-brane charges to the wrapped 1-brane charges vanish in this limit.
7In our convention (C

(2)
MN

, B
(2)
MN

) and (−ni, mi) transform as SL(2, R) doublets. Thus the exponent

given in (3.12) is S-duality invariant.
8The insertion of (−1)F into the trace reflects the effect of putting periodic boundary condition on

the fermions along the τ direction. We shall assume as in [4, 12, 37] that the trace over the center of
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the mass of the brane configuration and removing the contribution to H from the leading

term m(Q0, P0) that does not depend on mi, ni, we see that the path integral computes

the quantity

Tr

[
(−1)F exp

{
2πi

(
ρ1

P 2

2
+ σ1

Q2

2
+ v1Q · P

)}
exp {−2πβδm(Q,P )}

]

= Tr

[
(−1)F exp

{
2πi

(
ρ1

P 2

2
+ σ1

Q2

2
+ v1Q · P

)}
×

× exp

{
−2π

(
ρ2

P 2

2
+ σ2

Q2

2
+ v2 Q · P

)}]
(3.13)

where

ρ2 = Λ




|τ |2

τ2
+

Q2
R√

Q2
RP 2

R − (QR · PR)2





σ2 = Λ





1

τ2
+

P 2
R√

Q2
RP 2

R − (QR · PR)2





v2 = −Λ





τ1

τ2
+

QR · PR√
Q2

RP 2
R − (QR · PR)2



 , (3.14)

Λ ≡ β A1/2 λ
1/2
2

[
1

λ2τ2
+

|τ |2|λ|2

λ2τ2
+ 2

τ1λ1

λ2τ2
+ 2

]−1/2

. (3.15)

In going from the first to the second line of (3.13) we have used the expression for δm(Q,P )

given in (3.10). We shall take βA1/2 large but finite so as to provide sufficient exponential

suppression factor and make the trace finite. Defining

ρ ≡ ρ1 + iρ2, σ ≡ σ1 + iσ2, v ≡ v1 + iv2 , (3.16)

we can express (3.13) as

Tr

[
(−1)F exp

{
2πi

(
ρ
P 2

2
+ σ

Q2

2
+ v Q · P

)}]
. (3.17)

Thus we see that the path integral automatically leads to the dyon partition function with

complex (ρ, σ, v), with the imaginary parts of (ρ, σ, v) given by the prescription of [17]

given in (2.13). Due to the (−1)F insertion in the part integral the trace will include

sum over BPS states only. We note however that in order to relate (3.17) to the dyon

partition function defined in (2.5) we must insert additional projection operators into the

trace in (3.17) which restrict the states over which we sum. This is because a given set

of values of (Q2, P 2, Q · P ) may arise from many different charge vectors and in defining

mass degrees of freedom and their fermionic superpartners have been factorized; otherwise trace over these

additional zero modes will make the result vanish, and we need to insert six powers of helicity into the trace

to get a non-zero answer.
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the partition function (2.5) we have summed over distinct values of (Q2, P 2, Q ·P ) instead

of over all charges. For example (3.9) shows that Q · P depends only on the combination

m2+n1; thus for fixed Q2, P 2 if we want to count each value of Q ·P only once we must not

perform independent sums over m2 and n1. We have also assumed implicitly that we are

summing over states which do not carry any charges associated with a 3-brane wrapped

on a 2-cycle of K3 and a 1-cycle of S1 × S̃1. Finally, we have restricted the sum over

states to the sector with zero spatial momentum both along the circles S1 and S̃1 and

along the non-compact directions; this requires insertion of yet more projection operators.

We shall not keep track of these projection operators in subsequent analysis; these will be

important in explicit computation of the partition function but not in finding the physical

interpretation of (ρ, σ, v). We shall return to this issue in § 5.

In § 4 we shall find a geometric description of this partition function following the

duality maps given in [4, 12].

4 Chemical potentials to period matrix

In this section we shall find a geometric interpretation of the dyon partition function

introduced in the previous section. For this we need to use a dual M-theory description

of the theory. We first make a T-duality transformation along the euclidean time circle to

map the euclidean type IIB string theory described in the previous section to euclidean

type IIA string theory compactified on K3 × S1 × S̃1 × S1
T , – S1

T being the circle dual to

the euclidean time circle of IIB. This in turn can now be regarded as euclidean M-theory

on K3× S1 × S̃1 × S1
T × S1

M . Following the chain of dualities we can find the relationship

between the parameters labelling the M-theory torus T 4 ≡ S1 × S̃1 × S1
T × S1

M and the

parameters labelling the original type IIB compactification. In particular one finds that the

parameters τ , λ, C
(2)
τy , C

(2)
τ ey , B

(2)
τy and B

(2)
τ ey of the type IIB string theory can be regarded as

components of the metric along the four torus in the M-theory description. Alternatively

we can represent the M-theory torus as euclidean space with a standard metric

(dx1)2 + (dx2)2 + (dy1)2 + (dy2)2 , (4.1)

modded out by a lattice Λ. In this case the information about τ , λ, C
(2)
τy , C

(2)
τ ey , B

(2)
τy and

B
(2)
τ ey is encoded in the generators of the lattice Λ.

First consider the case when all the off-diagonal fields, e.g. τ1, λ1, C
(2)
ij and B

(2)
ij vanish.

In this case T 4 is a direct product of four circles. Let x1, x2, y1 and y2 denote coordinates

along the circles S1
M , S1

T , S̃1 and S1 respectively. Standard duality transformation rules

then tell us that these circles have periods L2, L2λ2, L1 and L1τ2 respectively for

L1 = 2π β1/3λ
1/3
2 A1/2τ

−1/2
2 , L2 = 2π λ

−2/3
2 β−2/3 . (4.2)

This is associated with a lattice Λ generated by the unit vectors



L2

0

0

0


 ,




0

L2λ2

0

0


 ,




0

0

L1

0


 ,




0

0

0

L1τ2


 . (4.3)
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Furthermore the volume of K3 in the final M-theory metric is related to that measured in

the original IIB metric via the relation

V M
K3 = β4/3 λ

4/3
2 VK3 . (4.4)

As mentioned above, deformations associated with the parameters τ1, λ1, C
(2)
ij and B

(2)
ij

can be shown to be associated with the geometric deformation of the four torus spanned

by S1, S̃1, S1
M and S1

T . One can find the parameters of the deformed torus in terms of the

parameters of the type IIB theory. The four generators of the lattice Λ associated with

this deformed M-theory torus turn out to be

e1 =




L2

0

0

0


 , e2 =




−L2λ1

L2λ2

0

0


 ,

e3 =




L2C
(2)
τ ey − L2λ1B

(2)
τ ey

L2λ2B
(2)
τ ey

L1

0


 , e4 =




L2C
(2)
τy − L2λ1B

(2)
τy

L2λ2B
(2)
τy

−L1τ1

L1τ2


 . (4.5)

Equivalently one can describe the M-theory torus as a product of four circles, each of period

2π, with metric gij = ei · ej . Note that a shift of C
(2)
τy , C

(2)
τ ey , B

(2)
τy or B

(2)
τ ey by an integer

produces an integer linear combination of the original ei’s and generate the same lattice.

Our next task will be to study the fate of the original D5-NS5-brane configuration in

the M-theory description. First consider the case where λ1, τ1, C
(2)
ij and B

(2)
ij vanish. In

this case the D5-brane wrapped along K3 × S̃1 becomes an euclidean M5-brane wrapped

along K3 × S̃1 × S1
M and the NS5-brane wrapped on K3 × S1 becomes an euclidean M5-

brane wrapped on K3 × S1 × S1
T . Leaving aside the K3 part, this can be regarded as a

degenerate genus two surface embedded in T 4, with period matrix

Ω ≡

(
σ̌ v̌

v̌ ρ̌

)
=

(
i L1/L2 0

0 i L1τ2/(L2λ2)

)
. (4.6)

For more general background in the original type IIB string theory, the M5-brane con-

figuration in the dual M-theory will have the form of K3 times a non-singular genus two

surface embedded in T 4. Our goal now will be to determine the period matrix of this

genus two surface in terms of the parameters labelling the original type IIB background.

The main tool will be supersymmetry which requires that the genus two surface is holo-

morphically embedded in T 4. Let ω1 and ω2 be the two linearly independent holomorphic

1-forms on the genus two surface and let A1, A2, B1, B2 be a basis of integral homology

cycles satisfying

Ai ∩ Bj = δij , Ai ∩ Aj = Bi ∩ Bj = 0 . (4.7)

Then the requirement that the genus two surface is holomorphically embedded in T 4

amounts to the constraint that the T 4 is given by C
2/Λ, where the lattice Λ is gener-
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ated by the complex two dimensional vectors [39]

ē1 =

(∮
A1

ω1∮
A1

ω2

)
, ē2 =

(∮
A2

ω1∮
A2

ω2

)
, ē3 =

(∮
B1

ω1∮
B1

ω2

)
, ē4 =

(∮
B2

ω1∮
B2

ω2

)
. (4.8)

C
(2) is endowed with the standard metric |dz1|

2 + |dz2|
2. Now by taking appropriate

complex linear combinations of the two ωi’s we can guarantee that
∮

Ai

ωj = δij ,

∫

Bi

ωj = Ωij , (4.9)

where Ω =

(
σ̌ v̌

v̌ ρ̌

)
is the period matrix of the genus two surface. Thus for a general choice

of the ωi’s, related to the one above by a GL(2, C) transformation matrix V , we have

ē1 = V

(
1

0

)
, ē2 = V

(
0

1

)
, ē3 = V

(
σ̌

v̌

)
, ē4 = V

(
v̌

ρ̌

)
. (4.10)

Our goal is to compare, up to SO(4) rotations, the basis vectors ēi given in (4.10) with

those given in (4.5) to find the relationship between the parameters τ , λ, C
(2)
ij , B

(2)
ij of

the M-theory torus and the parameters ρ̌, σ̌ and v̌ labelling the moduli of the genus two

surface. For this we have to express the two component complex vectors ēi given in (4.10)

as four component real vectors by separately picking out the real and imaginary parts of

ēi. If ēiR and ēiI denote the real and the imaginary parts of ēi, then the inner product

between ēi and ēj , regarded as real vectors, is given by ēiR · ējR + ēiI · ējI = Re(ē∗i · ēj).

Defining a, b, c through

V †V =

(
a c

c∗ b

)
, a, b ∈ R, c ∈ C , (4.11)

we get

Re(ē∗i · ēj) = Re




a c aσ̌ + cv̌ av̌ + cρ̌

c∗ b c∗σ̌ + bv̌ c∗v̌ + bρ̌

σ̌∗a + v̌∗c∗ σ̌∗c + v̌∗b σ̌∗(aσ̌ + cv̌) σ̌∗(av̌ + cρ̌)

+v̌∗(c∗σ̌ + bv̌) +v̌∗(c∗v̌ + bρ̌)

v̌∗a + ρ̌∗c∗ v̌∗c + ρ̌∗b v̌∗(aσ̌ + cv̌) v̌∗(av̌ + cρ̌)

+ρ̌∗(c∗σ̌ + bv̌) +ρ̌∗(c∗v̌ + bρ̌)




. (4.12)

We can now compare this with the inner product matrix ei · ej constructed from the

basis vectors given in (4.5). In computing ei · ej we shall consider the special case where

C
(2)
τy = B

(2)
τ ey , since this is the background used in the analysis of § 3. In this case the

equations Re(ē∗i · ēj) = ei · ej can be solved to give:

a = L2
2, b = L2

2|λ|
2, c = −L2

2λ1, σ̌1 = C
(2)
τ ey , ρ̌1 = B(2)

τy , v̌1 = C(2)
τy = B

(2)
τ ey ,

σ̌2
2 − 2λ1v̌2σ̌2 + |λ|2v̌2

2 = L2
1/L

2
2 ,

σ̌2v̌2 − λ1(σ̌2ρ̌2 + v̌2
2) + |λ|2v̌2ρ̌2 = −τ1L

2
1/L

2
2 ,

v̌2
2 − 2λ1v̌2ρ̌2 + |λ|2ρ̌2

2 = |τ |2L2
1/L

2
2 . (4.13)
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The equations for σ̌2, ρ̌2 and v̌2 can be solved as

σ̌2 = Λ̌

{
|λ|2

λ2
+

1

τ2

}
= Λ̌





1

τ2
+

P 2
0R√

Q2
0RP 2

0R − (Q0R · P0R)2



 ,

ρ̌2 = Λ̌

{
1

λ2
+

|τ |2

τ2

}
= Λ̌




|τ |2

τ2
+

Q2
0R√

Q2
0RP 2

0R − (Q0R · P0R)2



 ,

v̌2 = Λ̌

{
λ1

λ2
−

τ1

τ2

}
= −Λ̌





τ1

τ2
+

Q0R · P0R√
Q2

0RP 2
0R − (Q0R · P0R)2



 , (4.14)

where we have used eqs. (3.8) and

Λ̌ = L1L
−1
2 τ2

{
1 + 2λ1τ1 + 2λ2τ2 + |λ|2|τ |2

}−1/2
. (4.15)

Finally let us discuss the effect of inclusion of the D-strings and fundamental strings

in the original type IIB description. These correspond to appropriate excitations on the

M5-brane world volume. However in the VK3 → ∞ limit we expect the effect of these ex-

citations on the M5-brane geometry to vanish and (ρ̌, σ̌, v̌) given by (4.13), (4.14) continue

to describe the moduli of the genus two surface which the M5-brane wraps. Furthermore

in this limit we can replace (Q2
0R, P 2

0R, Q0R ·P0R) by (Q2
R, P 2

R, QR ·PR) in (4.14). Compar-

ing (4.13), (4.14), (4.15) with (3.11), (3.14), (3.15), we now see that

Λ̌ = Λ , (4.16)

and

ρ̌ = ρ, σ̌ = σ, v̌ = v . (4.17)

This shows that the dyon partition function given in (3.17) is given by an appropriate

partition function on a genus two Riemann surface with modular parameters (ρ, σ, v). Fur-

thermore, as already noted below (3.17), the imaginary parts of (ρ, σ, v) are automatically

set according to the prescription given in [17].

5 The partition function

While our analysis determines the moduli of the genus two surface on which the M5-brane

is wrapped, we have not determined precisely what computation we need to perform on

this genus two surface to extract the partition function. Since the low energy world-sheet

theory of M5-brane wrapped on K3 coincides with that of a fundamental heterotic string

on a transverse T 3 in static gauge Green-Schwarz formulation, one might expect the final

partition function to be given by that of an euclidean heterotic string in T 4 × T 3 [4, 12].9

However such a partition function vanishes due to the right-moving fermion zero modes,

9Note that in the V M

K3 → ∞ limit, describing a K3 wrapped M5-brane as a fundamental heterotic string

as in [4, 12] is not useful in general. However for computing an index one may still be able to use this

description.
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and one must pick only the left-moving part of the partition function to get the desired

result given by the inverse of the Igusa cusp form. One might expect that this prescription

should follow from the fact that in defining the original partition function in the type IIB

string theory we have removed by hand the right-moving fermion zero modes, but exactly

what this translates to in the M-theory description is not understood [12]. One possibility

will be to begin with the helicity trace by inserting six powers of helicity in the original

trace in type IIB string theory and then carefully keeping track of this factor during the

duality transformations.

Another issue arises from the need to insert additional projection operators into the

trace in the original type IIB description so that the trace receives contribution only from

a subset of dyon charges. As mentioned below (3.17), this is necessary to ensure that

in the trace each value of (Q2, P 2, Q · P ) is counted only once. In particular although

the full set of allowed charges consists of 28 electric charges and 28 magnetic charges,

the charge configuration we have considered span only a small subspace. Furthermore

we have restricted the trace to be over states carrying zero spatial momenta. What do

such restrictions correspond to in the M-theory picture? To answer this question we first

note that in the original type IIB description the missing charges can be divided into four

classes: 1) Kaluza-Klein monopoles associated with the circles S1 and S̃1, 2) more general

5-branes wrapped on K3 times S1 or S̃1, 3) charges associated with D3-branes wrapped

on a 2-cycle of K3 and S1 or S̃1 and 4) momenta along S1 and S̃1. Under the duality

map of § 4 that takes the euclidean type IIB string theory to the euclidean M-theory, the

Kaluza-Klein monopoles get mapped to Kaluza-Klein monopoles. Since we do not expect

the partition function associated with an euclidean M5-brane to include contribution from

the Kaluza-Klein monopole sector, it is natural to set the Kaluza-Klein monopole charges

in the original type IIB theory to zero. On the other hand a configuration carrying a

general set of 5-brane charges compared to the one considered in § 3, e.g. a (p1, q1) 5-brane

along K3 × S̃1 and a (p2, q2) 5-brane along K3 × S1, will get mapped to a euclidean M5-

brane configuration wrapping K3 times a genus 2-surface in T 4, but the embedding of the

genus two surface into T 4 will be topologically distinct for different (p1, q1, p2, q2). Thus

the M5-brane partition function, regarded as a partition function on a genus two surface,

will naturally include contribution from states with a fixed set of (p1, q1, p2, q2) which in

our case is (1, 0, 0, 1). Charges associated with D3-branes wrapped on a 2-cycle of K3 and

S1 or S̃1 correspond to switching on magnetic flux on the D5 or NS5-brane world-volume

along a 2-cycle of K3. By following the chain of dualities one finds that this corresponds

to switching on the flux of the 3-form field strength on the euclidean M5-brane along a

2-cycle of K3 times S1
M or S1

T . Thus requiring that the D3-brane charges vanish in the

original type IIB theory amounts to restricting the path integral over M5-brane degrees of

freedom to sectors with zero 3-form field strength flux through the 2-cycles of K3 times

S1
M or S1

T .10 Finally the effect of switching on momenta, either along S1 or S̃1 or along

10In our convention this corresponds to zero 3-form field strength along the product of a 2-cycle on K3

and one of the A-cycles on the genus two surface. Since the 3-form field strength is self-dual, this effectively

restricts all possible flux of the 3-form field strength on the euclidean M5-brane world-volume to zero barring

the issue that in an euclidean signature space the requirement of a self-duality makes a 3-form complex.
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the non-compact directions, corresponds to collective motion of the string network and

does not affect either the degeneracy of states or the values of Q2, P 2 and Q · P . Thus on

the type IIB side restricting these momenta to zero should correspond to factoring out (or

freezing) the euclidean path integral over these collective modes. We need to determine

what operation this corresponds to on the M5-brane partition function; we shall come back

to this issue shortly.

This does not exhaust the list of restrictions we need to impose on the M5-brane

path integral. As mentioned below (3.17), independent sum over m2 and n1 gives the same

(Q2, P 2, Q ·P ) infinite number of times since the latter depends on m2 and n1 only through

the combination m2 + n1. Thus charge vectors of the form (n1 + k,m2 − k) generate the

same set of invariants as (n1,m2). We shall now argue that this sum over k can also be

regarded as a sum over momentum conjugate to a collective mode. For this we note that if

we just have a D5-brane wrapped on K3× S̃1, then we can generate a fundamental string

charge along S̃1 by switching on an electric field along S̃1. This can be interpreted as the

momentum conjugate to the Wilson line along S̃1 on the D5-brane, and contributes to

the quantum number n1. Similarly by switching on an electric field on NS 5-brane along

K3× S1 we can generate a D-string charge along S1. This is the momentum conjugate to

the Wilson line along S1 on the NS 5-brane and contributes to −m2. However once the

D5-brane and the NS 5-brane join to form a string network as in figure 1, the Wilson lines

on D5-brane and NS 5-branes do not describe independent collective coordinates. To see

this we note from figure 1 that in the string network configuration there is an intermediate

(1, 1) 5-brane, and switching on an electric field along this generates equal but opposite

amount of D-string and the fundamental string charge. Thus by requiring conservation of

fundamental and D-string charges at the junction we see that the electric fields carried by

the D5-brane and the NS 5-brane must be correlated such that the net D-string charge

carried along S1 and the net fundamental string charge carried along S̃1 are equal. In

other words only changes of the form (n1,m2) → (n1 + k,m2 − k) can be regarded as

due to excitations of a collective coordinate. Thus picking one representative (m2, n1) for

each m2 + n1 corresponds to freezing this collective degree of freedom. On the other hand

fluctuations of the string network which change the values of m2 + n1 cannot be regarded

as collective coordinate excitations.

Thus our task now is to determine what operation on the M-theory side would corre-

spond to freezing or factoring out the contribution from the various collective modes of the

string network on the type IIB side. By following the chain of dualities leading from the

IIB description to the M-theory description we can identify the collective deformations of

the network in the euclidean IIB theory to those of the M5-brane in euclidean M-theory.

In particular the collective deformations associated with the translation of the network

along the non-compact directions, S1 and S̃1 correspond respectively to the freedom of

translating the euclidean M5-brane along the non-compact directions, S1 and S̃1. On the

other hand the collective deformation corresponding to the Wilson line on the network

corresponds to the freedom of switching on an anti-symmetric 2-form field, proportional to

the volume form on the genus two surface, on the M5-brane world-volume. Nevertheless

it is not entirely clear what a time dependent collective excitation of the string junction
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in IIB side translates to in the M-theory side. If φ denotes a collective mode of the string

network then freezing it would correspond to setting φ(τ) = 0 in the euclidean path in-

tegral. While the zero mode of φ(τ) has a simple interpretation in the dual description

involving the euclidean M5-brane, the physical interpretation of the τ dependent part of

φ(τ) in the M5-brane world-volume theory is more complicated since the duality relating

the two descriptions involves a T-duality transformation that converts momentum modes

along the euclidean time circle into fundamental string winding modes and vice versa.

To summarize, in order that the partition function of the string network in the type

IIB description computes the dyon partition function of our interest, we must freeze all

the collective excitations of the string network (or factor out their contribution from the

partition function), and at the same time set the magnetic flux on the 5-branes through the

2-cycles of K3 to zero. In the M-theory description the latter can be interpreted as setting

to zero appropriate flux of 3-form field strength on the M5-brane. However the physical

interpretation of freezing the collective coordinates of the string network is not entirely clear

since the duality relating the type IIB description and the M-theory description involves

T-duality along the euclidean time circle. One could however be a little less ambitious and

take the point of view that since on the type IIB side the contribution from the bosonic

(fermionic) collective modes do not affect the (ρ, σ, v) dependence of the partition function

but only generate an overall divergent (zero) factor, we could begin with the partition

function of the euclidean string network without freezing any collective modes and then

simply throw away the overall (ρ, σ, v) independent divergent or zero factors. This would

translate to a similar operation on the M5-brane partition function. This clearly would

not determine the overall normalization of the partition function but could determine its

dependence on (ρ, σ, v). Along this line one could also make use of the fact that in the type

IIB description the partition function Z depends only on (ρ, σ, v) and not their complex

conjugates due to (3.17). Thus in the final answer we can just pick up the holomorphic part

of the M5-brane partition function; any dependence on (ρ̄, σ̄, v̄) must cancel at the end.

If we accept the above proposal then the computation of the partition function will

involve computing the M5-brane partition function with certain restriction on the 3-form

fluxes and picking up (ρ, σ, v) dependence of the result without worrying about any overall

divergence or zero coming from bosonic or fermionic zero mode integration. Even then

the analysis is not entirely straightforward since the world-volume theory of the wrapped

M5-brane resembles that of heterotic string in static gauge Green-Schwarz formulation and

most of the explicit genus two computations in heterotic string theory are performed in the

Neveu-Schwarz-Ramond formulation. We hope to return to these issues in the near future.

We end by noting that knowing the partition function is important not only for finding

the explicit form of the dyon spectrum but also for understanding why as an analytic

function the partition function retains its form as we cross a wall of marginal stability.
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